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Abstract. We present SePi, a concurrent programming language based
on the monadic pi-calculus, where interaction is governed by linearly
re�ned session types. On top of the core calculus and type system, and in
order to facilitate programming, we introduce a number of abbreviations
and derived constructs. This paper provides a brief introduction to the
language.

1 Introduction

Session types [12] are by now a well-established methodology for typed, message-
passing concurrent computations. By assigning session types to communication
channels, and by checking programs against session type systems, a number of
important program properties can be established, including the absence of races
in channel manipulation operations, and the guarantee that channels are used
as prescribed by their types. As a simple example, a type of the form ! string

.! integer .end describes a channel end on which processes may �rst output a
string, then output an integer value, after which the channel provides no further
interaction. The process holding the other end of the channel must �rst input a
string, then an integer, as described by the complementary (or dual) type, ? string
.? integer .end. If the string denotes a credit card number and the integer value
the amount to be charged to the credit card, then we may further re�ne the type
by requiring that the capability to charge the credit card has been o�ered, as in ?

ccard: string .?amount:{x:integer |charge(ccard ,x)}.end. The most common approach
to handle re�nement types is classical �rst-order logic which is certainly su�cient
for many purposes but cannot treat formulae as resources. In particular it cannot
guarantee that the credit card is charged with the given amount only once.

SePi is an exercise in the design and implementation of a concurrent pro-
gramming language solely based on the message passing mechanism of the pi
calculus [16], where process interaction is governed by (linearly re�ned) ses-
sion types. SePi allows to explore the practical applicability of recent work on
session-based type systems [1, 25], as well as to provide a tool where new pro-
gram idioms and type developments may be tested and eventually incorporated.
In this respect, SePi shares its goal with Pict [19] and TyCO [22].

The SePi core language is the monadic synchronous pi-calculus [16] with repli-
cation rather than recursion [15], labelled choice [12], and with assume/assert



primitives [1]. On top of this core we provide a few derived constructs aiming at
facilitating code development. The current version of the language includes sup-
port for mutually recursive process de�nitions and type declarations, for polyadic
message passing and session initiation, a dualof operator on types, and an ab-
breviation for shared types. The type system of SePi is that of linearly re�ned
session types [1], the algorithmic rules for the re�nement-free type language are
adapted from [25], and those for re�nements are described in this paper.

SePi is currently implemented as an Eclipse plug-in, allowing code develop-
ment with the usual advantages of an IDE, such as syntax highlighting, syntactic
and semantic validation, code completion and refactoring. It further includes a
simple interpreter based on Turner's abstract machine [21]. There is also a com-
mand line alternative, in the form of a jar �le. Installation details and examples
can be found at http://gloss.di.fc.ul.pt/sepi.

The rest of this paper is structured as follows. The next section reviews
related work. Section 3 brie�y introduces SePi based on a running example.
Section 4 presents a few technical aspects of the language. Section 5 concludes
the paper, pointing possible future language extensions.

2 Related work

This section brie�y reviews programming language implementations either based
on the pi-calculus or that incorporate session types.

There are a few programming languages based on the pi-calculus, but none
incorporate session types. Pict [19] is a language in the ML-tradition, featur-
ing labelled records, higher-order polymorphism, recursive types and subtyping.
Similarly to the SePi approach, Pict builds on a tiny core (a variant of the
asynchronous pi-calculus [3, 11]) by adding a few derived constructs. TyCO [23]
is another language based on a variant of the asynchronous pi-calculus, fea-
turing labelled messages (atomic select/output) and labelled receptors (atomic
branch/input) [22], predicative polymorphism and full type inference. In turn,
SePi is based on the monadic synchronous pi-calculus with labelled choice [12],
explicitly typed and equipped with re�ned session types [1]. Polymorphism and
subtyping are absent from the current version of SePi.

On the other hand, we �nd programming languages that feature session types
or variants of these, but are based on paradigms other than the pi-calculus. For
functional languages, we have those that take advantage of the rich system of
Haskell, monads in particular, and those based on ML. Neubauer and Thiemann
implemented session types on Haskell using explicit continuation passing [17].
Sackman and Eisenbach improve this work, augmenting the expressive power of
the language [20]. Given that session types are encoded, the Haskell code for
session-based programs can be daunting. SePi works directly with session types,
thus hopefully leading to readable programs. Bhargavan et al. [2] present a ML-
like language for specifying multiparty sessions [13] for cryptographic protocols,
with integrity and secrecy support.



For object-oriented languages, Fähndrich et al. developed Sing# [6], a variant
of C# that supports message-based communication via shared-memory where
session types are used to describe communication patterns. Hu et al. introduced
SJ [14], an extension of Java with speci�c syntax for session types and structured
communication operations. Based on a work by Gay et al. [7], Bica [4] is an ex-
tension of the Java 5 compiler that checks conventional Java source code against
session type speci�cations for classes. Type speci�cations, included in Java an-
notations, describe the order by which methods in classes should be called, as
well as the tests clients must perform on results from method calls. Following a
similar approach, but using session types with lin/un annotations [25], Mool [5]
is a minimal object based language.

Finally, for imperative languages, Ng et al. developed Session C [18], a multi-
party session-based programming environment for the C programming language
and its runtime libraries [18]. Also using the theory of multiparty session types,
we have the Scribble framework presented by Honda et al. [10], that supports
bindings for several high-level languages such as ML, Java, Python, C# or C++,
and whose purpose is to provide a formal and intuitive language and tools to
specify communication protocols and their implementations. Neither of the works
discussed above feature any form of re�nement types, linear or classical.

3 A gentle introduction to the SePi language

This section introduces the SePi language, its syntax, type system and oper-
ational semantics. The presentation is intentionally informal. Technical details
can be found on the theoretical work the language builds upon, namely [25] for
the base language and [1] for re�nements.

Our running example is based on the online petition service [24] and on
the online store [1]. An Online Donation Server manages donation campaigns.
Clients seeking to start a donation campaign for a given cause begin by setting
up a session with the server. The session is conducted on a channel on which the
campaign related data is provided. The same channel may then be disseminated
and used by di�erent benefactors for the purpose of collecting the actual dona-
tions. Parties donating for some cause do so by providing a credit card number
and the amount to be charged to the card. The type system makes sure that the
exact amount speci�ed by the donor is charged, and that the card is charged
exactly once.

SePi is about message passing on bi-directional synchronous channels. Each
channel is described by two end points. Processes may write on one end or else
read from the other end, at each particular location in a program. Channels are
governed by types that describe the sequence of messages a channel may carry.
We start with input/output types. A type of the form ! integer .end describes a
channel end where processes may write an integer value, after which the channel
o�ers no further interaction. Similarly, a type ? integer .end describes a channel
end from which processes may read an integer value, after which the channel
o�ers no further interaction.



To create a channel of the above type one writes

new w r : ! i n t e g e r . end

Such a declaration introduces two new program variables: w of type ! integer .

end, and r of type ? integer .end. A semantically equivalent declaration is new r

w: ? integer .end. To write the integer value 2013 on the newly created channel,
one uses w!2013. To read from the channel and let program variable x denote
the value read, one writes r?x. For the purpose of printing integer values on the
console, SePi provides the primitive channels printInteger and printIntegerLn , and
similarly for the remaining base types: boolean and string . The Ln versions issue
a newline after printing the value. Code such as channel writing or reading can
be composed by pre�xing via the dot notation. To read an integer value and
then to print it, one writes r?x. printInteger !x. To run two processes in parallel
one uses the vertical bar notation. Putting everything together one obtains our
�rst complete program, composed of a channel declaration and two processes
running in parallel while sharing the channel.

new w r : ! i n t e g e r . end
w!2013 | r ? x . p r i n t I n t e g e r ! x

Running such a program would produce 2013 on the console, after which the
program terminates.

We now move on to choice types. The donation server allows clients to setup
donation campaigns piece-wise. The required information (title, description, due
date, etc.) may be introduced in any order, possibly more than once each. Once
satis�ed, the client �presses the commit� button. A channel end that allows a
writer to select either the setDate option or the commit option is written as:

+{setDate : end , commit : end}

Conversely, a channel end that provides a menu composed of the two same choices
can be written as &{setDate:end, commit:end}. To select the setDate option on a +

channel end we write w select setDate. Conversely to branch on a & channel end
one may write case r of setDate → ... commit → ... . Putting everything together
one obtains the following process.

new w r : +{se tDate : end , commit : end}
w s e l e c t s e tDate |
case r o f s e tDate → p r i n t S t r i n g ! "Got se tDate "

commit → p r i n t S t r i n g ! "Got commit"

We have seen that types are composed by pre�xing, using the dot notation:
! integer .end means write an integer and then go on as end. We can compose the
output and the select type we have seen above, so that the output of an integer
is required after the setDate choice is taken. We leave to the reader composing
the two programs above so that it interacts correctly on a channel whose client
end is of type +{setDate:!integer .end, commit:end}.

The problem with this type is that it does not re�ect the idea of �uploading
the campaign information until satis�ed, and then press the commit button�. All
a client can do is either set the date or else commit. What we would like to say



is that after the setDate choice is taken the whole menu is again available. For
this we require a recursive type of the form:

r e c a .+{ se tDate : ! i n t e g e r . a , commit : end}

A client w may now upload the date two times before committing:

w s e l e c t s e tDate . w! 2 012 .
w s e l e c t s e tDate . w! 2 013 . w s e l e c t commit

The donation server, when governed by type rec a.&{setDate:?integer .a, commit:

end}, needs to continuously o�er the setDate and commit options. Such behaviour
cannot be achieved with a �nite composition of the primitives we have seen so far.
We need some form of unbounded behaviour, which SePi provides in the form a
def process. The setup process below is the part of the donation server responsible
for downloading the campaign information. To simplify the example, only the
due date is considered and even this information, x, is immediately discarded.
We will see that setup is a form of an input process that survives interaction,
thus justifying its invocation with the exact same syntax as message sending:
setup! r.

de f s e tup r : r e c a .&{ se tDate : ? i n t e g e r . a , commit : end} =
case r o f s e tDate → r ? x . s e tup ! r

commit → . . .

Process de�nition, def, is the second form of declaration in SePi (the �rst
is new). There is yet a third kind of declaration (rather, an abbreviation): type.
Introducing the name Donation for the above recursive type, one may write:

type Donat ion = +{se tDate : ! i n t e g e r . Donation , commit : end}

thus foregoing the explicit use of the rec type constructor. Type, process and
channel declarations may be mutually recursive. Keywords type, def, and new

introduce a series of equations that are elaborated by the compiler, as described
in Section 4.

There is a further handy abbreviation. Session types tend to be quite long; if
a channel's end point is of type rec a.+{setDate:! integer .a, commit:end}, the other
end is of type rec a.&{setDate:?integer .a, commit:end}. In this case we say that
one type is dual to the other, a notion central to session types. Given that we
abbreviated the �rst type to Donation, the second can be abbreviated to dualof

Donation. Putting every together we obtain the following process.

type Donat ion = +{se tDate : ! i n t e g e r . Donation , commit : . . . }
de f s e tup r : dua l o f Donat ion =

case r o f s e tDate → r ? x . s e tup ! r
commit → . . .

new w r : Donat ion // the dona t i on channe l
w s e l e c t s e tDate . w! 2 012 . w s e l e c t s e tDate . w! 2 013 .

w s e l e c t commit | // a c l i e n t
s e tup ! r // a s e r v e r



Continuing with the example, after setup comes the promotion phase. Here
the donation channel is used to collect donations from benefactors. Benefactors
donate to a cause by providing a credit card number and the amount to be
charged to the card. So we rewrite the donation type to:

type Donat ion = +{se tDate : ! i n t e g e r . Donation , commit : Promotion }
type Cred i tCa rd = s t r i n g

How does type Promotion look like? If we make it !CreditCard .! integer .end, then
the server accepts a single donation. Clearly undesirable. If we choose rec a .!

CreditCard .! integer .a, then we accept an in�nite number of donations. And this
is undesirable for two reasons: a) regrettably, no campaign will ever receive an
in�nite number of donations, and b) all these donations would have to be issued
from the same thread (a process without parallel composition), one after the
other. The �rst problem can be easily circumvented with a rec-choice combina-
tion, as in type Donation. The root of the second problem lies in the fact that
types are linear by default, meaning that each channel end can be known, at
any given point in the program, by exactly one thread. And this goes against the
idea of disseminating the channel in such a way that any party may individually
donate, by just knowing the channel. We need a means to say that channel ends
can be shared by more than one process. Towards this end, we label each pre�x
type as either un or lin . Shared types are quali�ed with un (for unrestricted);
linear types with lin . It turns out that the lin quali�er is optional. For example,
! integer .end abbreviates lin ! integer .end.

The type system keeps track of how many threads know a channel end: if
lin then exactly one, if un then zero or more. Linear channels are exempt from
races: we do not want two threads competing to set up a donation campaign.
Shared channels may engage in races: we do want many (as many as possible)
simultaneous benefactors carrying out their donations. Care must however be
exerted when using shared channels. Imagine that type Promotion looks like rec

a.un!CreditCard.un! integer .a, and that we have two donors trying to interact with
the server,

w! "2345" .w!500 | w! "1324" .w!2000 | r ? x . r ? y . . .

Further imagine that the �rst donor wins the race, and exchanges message "

2345". We are left with a process of the form w!500 | w!"1324".w!2000 | r?y ... ,
where the value transmitted on the next message exchange can be an integer
value (500) or a string ("1324"), a situation clearly undesirable. To circumvent
this situation we pass the two values in a single message, by making w of type
rec a.un!(CreditCard, integer ) .a. This pattern, rec a.un!T.a, is so common that we
provide an abbreviation for it: ∗!T, and similarly for input. So here is the new
type for Promotion.

type Promotion = ∗ ! ( Cred i tCard , i n t e g e r )

Now a client can donate twice (in parallel); it may also pass the channel to
all its acquaintances so that they may donate and/or further disseminate the
channel. In the process below, notice the parallel composition operator enclosed
in braces when used within a process.



w s e l e c t s e tDate . w! 2 014 . w s e l e c t commit . {
w! ( "2345" , 500) | w! ( "1324" , 2000) | a cqua i n t ance !w

}

The ability to de�ne types that �start� as linear (e.g. Donation) and end up as
unrestricted (Promotion) was introduced in [25].

So far our example is composed of one server and one client. What if we
require more than one client (the plausible scenario for an online system) or
more than one server (perhaps for load balancing)? If we add a second client, in
parallel with the above code for the server and the client, the program does not
compile anymore: there is a race between the two clients for the linear channel
end w. On the one hand we have seen that the donation channel must be linear;
on the other hand we want a donation server reading on a well-known, public, un,
channel. We start by installing the server on a channel end of type ∗?Donation,
and disseminate the client end of the channel (of type dualof ∗!Donation, that is
∗?Donation). Our main program with two clients looks as follows.

new c s : ∗? Donat ion // c r e a t e an On l i n e Donat ion channe l
d ona t i o nS e r v e r ! s | // send one end to the Donat ion S e r v e r
c l i e n t 1 ! c | c l i e n t 2 ! c // l e t the whole wor ld know the o th e r

To this pattern�create a channel, send one end to the server, keep the
other�we call session initiation. We found it so common that we introduced
an abbreviation for it. The above three lines of code can be replaced with the
following process.

dona t i o nS e r v e r ! ( new c : ∗? Donat ion ) . { c l i e n t 1 ! c | c l i e n t 2 ! c }

Now the �rst output introduces a binding (for program variable c), hence we
cannot use parallel composition anymore. Instead we use pre�x. One of the
advantages of the session initiation abbreviation is that it spares the programmer
from coming up with two di�erent identi�ers; that for the server end becomes
implicit. Notice however that, in a session initiation process of the form x!(new

y:T).P the actual end point that is sent is of type dualof T.
We now concentrate on how the donation server charges credit cards. In

general, merchants cannot directly charge credit cards. As such our donation
server forwards the transaction details (the credit card number and amount to
be charged) to the credit card issuer (a bank, for example). Assume the following
de�nition for a bank: def bank (ccard: CreditCard, amount: integer). Well behaved
servers receive the data and forward it to the bank:

r ?( ccard , amount ) . bank ! ( ccard , amount )

Not so honest servers may try to charge a di�erent amount (perhaps a hidden
tax),

r ?( ccard , amount ) . bank ! ( ccard , amount+10)

or to charge the right amount, but twice.

r ?( ccard , amount ) . { bank ! ( ccard , amount ) | bank ! ( ccard , amount ) }



While types cannot constitute a general panacea for fraudulent merchants,
the situation can be improved. The idea is that the bank is not interested in
arbitrary (ccard ,amount) pairs but on pairs for which a charge (ccard ,amount)

capability has been granted. We then re�ne the type of the amount in the bank's
signature. We are now interested on amounts x of type integer for which the
predicate charge (ccard ,x) holds, that is, parameter amount becomes of type

{x : i n t e g e r | cha rge ( ccard , x ) }

The capability of charging a given amount on a speci�c credit card is usually
granted by the benefactor, by assuming an instance of the charge predicate, as
in:

assume cha rge ( "2345" , 500) | w! ( "2345" , 500)

The bank, in turn, makes sure that the transaction details were granted by the
client, by asserting the same predicate:

de f bank ( cca rd : Cred i tCard ,
amount : {x : i n t e g e r | cha rge ( ccard , x ) }) =

a s s e r t cha rge ( ccard , amount ) . . .

Assumptions and assertions have no operational signi�cance on well-typed
programs. At the type system level, assumptions and assertions are treated lin-
early : for each asserted instance of a predicate there must be exactly one such
instance assumed, and conversely. In this way formulae are treated as resources:
they are introduced in the type system via assume processes, passed around
in re�nement types, and consumed via assert processes. As such, the code for
servers that try to charge twice the right amount does not type check, for one
of the bank's assertions is not matched by any assumption. The code for servers
that try to charge a di�erent amount does not type check either. In this case the
benefactor's assumption charge("2345", 500) would never be asserted, whereas the
bank's assertion charge("2345", 510) would not have a corresponding assumption.
Linearity also means that code for banks that forget to assert charge(ccard ,

amount) does not type check. We leave as an exercise writing a typeful server
code that charges an amount di�erent from that stated (and assumed) by the
benefactor (or that charges twice the right amount), by careful manipulation of
assume/assert in the server code.

Benefactors that wish to be charged twice, may issue two separate assump-
tions or join them on a single formulae, as in the code below.

assume cha rge ( "2345" ,500) ∗ cha rge ( "2345" ,500) |
w! ( "2345" ,500) | w! ( "2345" ,500)

Likewise, multiple assertions can be conjoined in one, via the tensor (∗) formula
constructor [9].

4 Technical aspects of the language

SePi is based on the synchronous monadic pi calculus (as in [25]) extended with
assert and assume primitives (inspired by [1]). On top of this core calculus we



added a few derived constructs. This section brie�y describes the core language,
the derived constructs in the SePi language and the type checking system.

The core language includes syntactic categories for formulae A, types T, val-
ues v, expressions e, and processes P. Formulae in the current version of the
language are built from uninterpreted predicates (over values only), tensor (∗)
and unit. At the type level we have base types ( integer , boolean, string , and end),
pre�x types (namely, input q?x:T.U, output q!x:T.U, branching q&{l1:T1 ,..., ln
:Tn} and selection q+{l1:T1 ,..., ln :Tn}, where q is either lin or un), recursion
(rec a.T and a) and re�nement types ({x:T|A}). Pre�x types are labelled with
an optional identi�er x that may be referred to in the continuation type (e.g.,
!x: integer .!{y: integer |p(x,y)}.end).

Values in SePi are program variables (standing for channel ends), as well
as integer, boolean and string constants. At the level of expressions SePi in-
cludes the familiar operators on integer and boolean values. For processes we
have channel creation (new x1 y1 :T1 ...new xn yn :Tn P), pre�x processes (monadic
input, replicated x∗?y.P or use-once x?y.P, monadic output x!e.P, selection x

select l .P, and branching processes case x of l1→P1 ... ln→Pn), conditional if

e then P else Q, n-ary parallel composition ({P1 |...| Pn}), assume A and assert

A.P. Mutually recursive channel creation new x1 y1 :T1 new x2 y2 :T2 allows for
channel x1 to occur in type T2, and for x2 to occur in type T1.

Derived constructs at the type level include support for polyadic message
passing (q!(y1 :T1 ,... yn :Tn).U and q?(y1 :T1 ,... yn :Tn).U), the star syntax for un-
restricted types (∗?T, ∗!T, ∗&{l1 ,..., ln}, and ∗+{l1 ,..., ln}), and the dualof type
operator. Furthermore, the lin quali�er is optional.

Derived constructs at the process level include support for polyadic message
passing (x!(e1 ,..., en).P and x?(y1 ,..., yn).P) and for session initiation (x !(...,

new y:T ,...) .P). Furthermore the empty parallel composition is optional when
used in the continuation of a pre�x process (x!e abbreviates x!e.{}).

Finally, there is one derived construct that mixes types and processes: mu-
tually recursive declarations of the form D1 ...Dn P, where each declaration Di is
either a channel creation new x y:T, a process de�nition def x(y1 :T1 ,..., yn :Tn) =

P, or a type abbreviation type a = T.

We now discuss the derived constructors in SePi, starting with those related
to types. A type of the form ∗?T is expanded into rec b.un?T.b for b a fresh type
variable, and similarly for output, branching and selection. The dualof type op-
erator produces a new type where input ? is replaced by output !, branching &

is replaced by selection +, and conversely in both cases. All other type construc-
tors remain unchanged (except for rec). We use the co-inductive de�nition of
Gay and Hole [8], extended to re�nement types in the natural way.

In order to simulate interference-free polyadic message passing on shared
(un) channels, we use a standard encoding for the send and receive operations
(cf. [16, 25]). For example, the pair-type (ccard : CreditCard, amount: {x: integer |

charge(ccard ,x)}) in the signature of the bank de�nition (Section 3) is equivalent
to the re�ned linear session type

l i n ? c : C r ed i tCa rd . l i n ?{ x : i n t e g e r | cha rge ( c , x ) } . end



where the pre�x ?c:CreditCard is labelled with identi�er c, so that it may be re-
ferred to in the continuation, namely in the predicate charge(c,x) for the amount
to be charged. On the process side, the output process b!("2345",500).P abbrevi-
ates

new r w : l i n ? c : C r ed i tCa rd . l i n ?{ x : i n t e g e r | cha rge ( c , x ) } . end
b ! r .w! "2345" .w! 5 0 0 .P

and the input process c?(x,y) .Q abbreviates

c ? z . z ?x . z ?y .Q

All process constructors in the core language were introduced in Section 3,
except for replication. A replicated input process behaves as an input process,
except that it survives message reception. We use ? for a linear input and ∗? for
a replicated input. For example:

new w r : ∗ ! i n t e g e r
w!2013 | r ∗? x . p r i n t I n t e g e r ! x | w!2014

prints two integer values, while

new w r : ∗ ! i n t e g e r
w!2013 | r ? x . p r i n t I n t e g e r ! x | w!2014

will print one only.
A process de�nition is expanded into a channel creation followed by a repli-

cated input process. Each declaration of the form def p x:T = P introduces a new
channel, as in new p p': ∗!T where p' is a fresh identi�er, in the scope of which,
we add a replicated process of the form p'∗?x.P, in parallel with the rest of the
program. Process de�nitions obviate in most cases the direct usage of replicated
input processes, hiding one of the channel ends (p'), thus simplifying code devel-
opment. They are also amenable to an optimisation in code interpretation [21].

Session initiation is discussed in Section 3. In general, a process x !(..., new

y:T ,...) .P is expanded into a process of the form new z1 z2 :T x !(..., z2 ,...) .P',
where variables z1 and z2 are fresh, and P' is obtained from P by replacing
(free) occurrences of y by z1. This substitution is also applied to the arguments
of the output process to the right of the new. Fresh variables prevent the free
variable capture that would occur in process x!(new x:end) or y!(x,new x:end). Our
experience shows that process de�nition and session initiation account for the
vast majority of channel creation, e�ectively dispensing the explicit declaration
of one channel end.

A sequence of declarations followed by a process is a SePi process. Declara-
tions may be mutually recursive. Below is an example that, when run, prints an
in�nite sequence of alternating true/ false values. Notice the mutually recursive
process (p and q) and type (T and U) de�nitions. Further notice that type T

depends on process p, which depends on channel r, which depends on type T

again.

type T = ∗ ! ( boolean , { y :U | a ( y , p ) })
type U = dua l o f T



de f p b : boo lean = { assume a ( r , p ) | w! ( not b , r ) . q ! ( ) }
de f q ( ) = r ?(b , y ) . a s s e r t a ( y , p ) . p r i n tBoo l e anLn ! b . p ! b
new w r : T
p ! f a l s e | q ! ( )

Declarations are elaborated in a few steps. In the �rst step, type names,
channel names, and process names (which are after all channel names) are col-
lected. This information allows us to check type formation (essentially that types
do not contain free type and program variables). In the second pass, we check
type formation and solve the system of equations. Systems of type equations are
guaranteed to have solutions due to the presence of recursive types in the syntax
of the language and to the fact that types are required to be contractive.1 We
defer to the next phase the elaboration of the dualof operator. For example, the
solution to the system of equations above is T = rec u.!(boolean ,{y:dualof u |

a(y,p)}).u and U = dualof T. The third step expands the occurrences of dualof

(co-inductively, as explained above) to obtain:

T = r e c u . un ! ( boolean ,
{y : r e c v . un ?( boolean , { z : v | a ( z , p ) }) . v | a ( y , p ) }) . u

U = r e c u . un ?( boolean ,
{y : r e c v . un ?( boolean , { z : v | a ( z , p ) }) . v | a ( y , p ) }) . u

At this point all types are resolved. The fourth step adds to the typing con-
text entries for new channels (in new and def declarations) with the appropriate
types. Finally, the last pass checks the replicated processes obtained from pro-
cess de�nitions. Translating the example above into the core language yields the
process below.

new p pp : r e c u . un ! boo lean . u
new q qq : r e c v . un ! ( ) . v
new w r : r e c u . un ! ( l i n ? boo lean .

l i n ?{ y : r e c v . un ?( l i n ? boo lean . l i n ?{ z : v | a ( z , p ) } . end ) . v |
a ( y , p ) } . end ) . u

pp∗?b . {
assume a ( r , p ) |
new x y : l i n ? boo lean . l i n ?{ y : r e c v . un ?( l i n ? boo lean . l i n ?{ z : v | a

( z , p ) } . end ) . v | a ( y , p ) } . end
w! x . y ! not b . y ! r . q ! ( )

} |
qq ∗? ( ) . r ? z . z ?b . z ?x . a s s e r t a ( x , p ) . y . p r i n tBoo l e anLn ! b . p ! b |
p ! f a l s e | q ! ( )

The type system of the SePi language is decidable. The algorithmic rules
are those in [25], with minor adaptations in the rules for replicated input and
case processes. Algorithmic typing systems crucially rely on the decidability of
type equivalence. Type equivalence for the non-re�ned language is decidable [25].
Type equivalence for SePi is also decidable thanks to the extremely simple syn-
tax of formulae. In essence, we keep separated a typing context and a multiset

1 A type is contractive if it contains no sub-expression of the form rec a1 ... rec an .a1.



of predicates. An invariant of the type system states that context entries do not
contain re�nement types at the top level. The type equivalence procedure (basi-
cally, equality of regular in�nite trees) may use (hence, remove) predicates from
the multiset, if required.

The rules for assume and assert in [1] are not algorithmic. Nevertheless, al-
gorithmic rules are easy to obtain. Processes of the form assume A add A to the
formulae multiset after breaking the tensors and eliminating occurrences of unit;
processes of the form assert A try to remove the predicates in A from the multi-
set. Input processes of the form x?y.P eliminate the top-level re�nements in the
type for y; the resulting type is added to the typing environment, the predicates
are added to the multiset. The remaining rules remain as in [25], except that
they now work with the new procedure for type equivalence.

5 Conclusion and future work

We presented SePi, a concurrent programming language based on the monadic
pi-calculus where communication between processes is governed by session types
and where linearly re�nement types may be used to specify properties about
the values exchanged. In order to facilitate programming we added to SePi a
few derived constructs, such as output and input of multiple values, mutually
recursive process de�nitions and type declaration, session initiation, as well as
the dualof type operator.

Our early experience with the language unveiled a few further constructs
that may speed up code development, such as, a simple import clause allowing
the inclusion of code in a di�erent source �le, thus providing for limited sup-
port for API development. In order to keep the language simple, the current
version of SePi uses predicates over values only, thus preventing formulae con-
taining expressions, such as p(x+1). We plan to add expressions to predicates,
together with the appropriate theories (e.g., arithmetic), combining the current
type checking algorithm with an SMT solver. Finally, we acknowledge that the
current language of formulae is quite limited (essentially a multiset of uninter-
preted formulae). We are working on a system that provides for the persistent
availability of resources in a form of replicated (or exponential) resources. Poly-
morphism and subtyping may be incorporated in future versions of the language.
We are also interested in extending the type system so that it may guarantee
some form of progress for well typed processes.
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