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Abstract
In modern architectures, due to the huge gap between CPU per-
formance and memory bandwidth, an application’s performance
highly depends on the speed at which the system is able to de-
liver data to operate on. The placement of data in memory affects
the number of cache misses, and thus the overall speed of the ap-
plication. To address this, pooling and splitting are two techniques
that allow to group or split data in memory, according to whether
they are usually accessed together or separately. However, these
are either low-level optimisations, or outside the control of the pro-
grammer.

We propose OHMM, an object-oriented programming language
that uses ownership-like annotations to express high-level con-
straints on how objects should be placed in memory. These anno-
tations will allow the runtime to allocate objects using pooling and
splitting, and thus lead to efficient data accesses. In this short pa-
per, we explain OHMM through an example, show how the objects
will be laid out, and informally argue the benefits in terms of cache
performance.
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1. Introduction
Most modern programming languages are designed with the mind-
set that memory accesses are “for free”. When the speed of a mem-
ory access rivalled that of the CPU, this abstraction was valid, how-
ever in reality, the gap between the speed of CPU’s and main mem-
ory is steadily increasing to the point where computation is almost
for free, and the real cost of execution, both in terms of speed and
power consumption, is in accessing memory (c.f. Memory Wall
problem [1]).

Cache memories, or hierarchies of cache memories have been
part of modern architectures to hide this latency for long time,
exploiting the temporal and spatial locality inherent in most pro-
grams. In this type of architectures, a core interacts as much as
possible with the top most cache level in order to get the needed
data, and when it fails to do so, it tries to access the data in the next
cache level, and so on, until it finds that the required data is not in
cache (the so called cache miss) and needs to be loaded from main
memory. Accessing data from the different memory levels has dif-
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Sub sytem Latency Slowdown Bandwidth
L1 Cache 4 cycles x 1 365GB/s
L2 Cache 12 cycles x 3 204GB/s
L3 Cache 21 cycles x 5 119GB/s
DRAM 250 cycles x 62 20GB/s

Table 1. Latency and Bandwitdh of the different memory levels,
in an Intel i7-4600U CPU. Numbers taken from [2].

ferent costs. Table 1 shows an example of costs. These numbers
show how important it is to avoid cache misses. When a program
execution results in too many cache misses, it may suffer poor per-
formance and high energy cost. Moreover, if the program runs on a
NUMA machine, these costs will be even more evident, as a cache
miss in these machine can imply accessing memory from a differ-
ent NUMA node, which costs more CPU cycles than accessing the
local memory [3].

In order to reduce the number of cache misses, the programmer
needs to understand “what goes into cache” when data is loaded
from memory. This is at odds with mainstream programming ab-
stractions1. Ultimately, memory is an array of bytes, and unless the
high-level data is carefully mapped to this array of bytes, there is
no control over what will cause cache misses.

Pooling and splitting are two existing techniques to tackle this
problem, when dealing with large data-structures: Pooling means
that objects are created in separate memory pools depending on
their type or time of allocation. The rationale behind this is that
objects that are frequently used together should be placed together
for better cache utilisation. There is already substantial work on
pooling, most of it for unmanaged languages, such as C or C++ [4,
5, 6, 7, 8, 9, 10, 11]. Object splitting splits composite objects up
into different parts that ideally are not used together often. Split-
ting can have a significant performance impact as it allows to bring
into cache more useful data (parts of objects that are not needed
are not fetched from memory). Franz and Kistler were among the
first to explore the subject of automatic object splitting [12]. Sev-
eral researchers have combined both pooling and splitting in recent
works [7, 8, 13, 10, 14]. In applications where performance is crit-
ical, programmers manually transform an array of structs into a
structure of arrays in order to obtain similar behaviour to pooling
and splitting. However, this approach makes the code more com-
plex, error-prone and not suitable for object-oriented programming,
as the reasoning about an object, or struct, as a single unit is not
longer valid.

Even though there has been a great amount of research on
pool allocation and object splitting, to the best of our knowledge,

1 In Java, for instance, the size of objects is generally not even known by
programmers.
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there has been no work on designing a front end that allows the
programmer to express object pooling and splitting.

In this paper we give an outline of our ideas on OHMM2, an
object-oriented programming language that relies on a static type
system, specifically on a variant of ownership types, to control how
data is placed in memory. This language allows the programmer to
write modular code (in the sense that the same class declarations
can be used for different layouts), high-level and type safe object
oriented code, while benefiting from the low-level advantages of
pooling and splitting.

Paper structure. Section 2 demonstrates the problem using an
example written in OO style; Section 3 describes how to solve the
problem, by adding annotations to the same code; Section 4 briefly
explains how OHMM will take advantage of the garbage collector;
Section 5 discusses related work and Section 6 finishes the paper
with conclusions and future work.

2. Delving into the problem
In this section we demonstrate how mainstream object-oriented
languages lack the means to express data placement, and why they
suffer from bad cache utilisation, using a running example. We
consider the following VideoList that is a typical list of nodes linked
by a next field. Each object of type Node points to a further object
of type Video, which contains three fields of type int: an identifier
(id), the number of times the video has been played (views) and the
number of likes (likes) the video has gotten.

class Video
� id: int
� views: int
� likes: int

class Node
� video: Video
� next: Node

class VideoList
head: Node
def popularVideos(pivot: int): void
let cur = this.head in
while (cur != null) {
let v = cur.video in
if v.views > pivot then
print(v.id + ”: ” + v.views + ”, ” + v.likes);

cur = cur.next
}

Note that the colour of the fields in the code corresponds to their
colours in all the diagrams of the paper.

The method popularVideos measures popularity by iterating over
the whole list and checking for each video, if the number of views
is greater than a given pivot. If it is, then it prints its id, views and
likes.

How many programmers “visualise” this list in memory and
how it is actually allocated often differs. Figure 1 shows how usu-
ally data structures are taught and depicted in text books. However,
this neat representation does not reflect the reality in memory. As
we see in Figure 2, all the nodes and videos are likely to be scat-
tered all over memory with no ordering, depending on the allocator
and garbage collector used.

Whenever the processor requires in-memory data, a chunk of
memory (of the same size of a cache line), containing this data and
what is adjacent in memory to it, is fetched to cache. Given this, and
with such “random” allocation, each time a Video object is fetched
to cache, other (useless) data will potentially be fetched to the same

2 stands for Optimised Heaps for Memory Management
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Figure 1. VideoList representation in the programmer’s mind.
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Figure 2. Actual VideoList representation in memory.

cache line, thus occupying precious cache space. Moreover, in the
worst case, each video access will result in an expensive cache
miss.

3. Solving the problem with OHMM
A possible solution to good data layout and consequent good pro-
gram locality is to allocate all the objects of type video in consec-
utive memory, so that, when a Video is read from memory, a few
more videos (depending on the cache line size) will be loaded as
well. This brings to cache useful data for the next loop iterations,
thus reducing cache misses. This optimisation can be refined by
splitting objects so that only the useful part of the object is loaded
into cache, allowing to fit more data.

In this section, using the example from the previous section,
we informally describe how we intend to extend an object oriented
programming language with annotations that describe how and
where objects should be allocated in memory. As basis for this
work we use a small sequential OO language, which features class
declarations, and field and method declarations inside classes, as
expected.

We extend such a language with two kinds of annotations:

Ownership annotations that identify which objects must be allo-
cated close to each other. The rationale behind these annotations
is that objects that will be often used together, should be allo-
cated together, if possible following their access order, in order
to fetch useful data in advance.

Cluster annotations that define which object fields must be to-
gether or separated in memory. The idea behind these annota-
tions is that fields of the same object that are often used together
should be placed together, while fields that are not likely to be
used together should be allocated in a different places. Splitting
of object fields allows to keep more “important” data in cache.
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3.1 Ownership Annotations
In this section we explain how we use annotations based on own-
ership types to describe where to place objects. For example, the
class declaration for the VideoList can be extended as follows:

class VideoList〈o1, o2, o3〉
head: Node〈o2, o3〉
/∗∗ etc ∗∗/

This means that an instance of VideoList will be located in o1,
and can reach objects located in o2 and o3 through the head field,
similarly to other ownership type systems [15, 16].

The remaining class declarations are extended in the following
manner:

class Node〈o1, o2〉
� video: Video〈o2〉
� next: Node〈o1, o2〉
/∗∗ etc ∗∗/

class Video〈o〉
� id: int
� views: int
� likes: int
/∗∗ etc ∗∗/

The class declaration Node takes two ownership parameters
and has two fields. The object referred by next is an instance of
Node which is in the same location o1, as this node. The object
referred by video is an instance of Video which is in some other
location o2. The Video type is parameterised over a single pool
parameter denoting its containing location; all its three fields are
of primitive type, and have value semantics—they do not take
additional parameters. With this OHMM code, all the nodes of this
list are allocated close to each other—all of them are allocated in
the same contiguous space, the same pool, as well as, all the videos
are allocated all together in some other pool.

One of the main motivations to choose ownership types to
describe where objects are allocated was that they support modular
class declarations. We want to allow different instances of the same
class to be allocated in different places: objects can be floating
somewhere in memory, or allocated in pools, depending on their
type. As examples, we consider three different allocating schemes,
using the current VideoList example:

Scheme 1. All the objects should be allocated somewhere in mem-
ory, as in Figure 2.

Scheme 2. All the videos should be allocated in one pool while all
the other objects are floating in memory.

Scheme 3. All the nodes and videos should be allocated in pools,
and the VideoList object should be somewhere in memory, as in
Figure 3

In order to achieve these different layouts we allow the program-
mer to use in her types the keyword none to identify objects that are
not allocated in pools, and to create pools which can be referred in
the types as well. The code to create a VideoList with these three
schemes is below:

/∗∗ Scheme 1 ∗∗/
new VideoList〈none, none, none〉

/∗∗ Scheme 2 ∗∗/
Pool p of Video in
new VideoList〈none, none, p〉

/∗∗ Scheme 3 ∗∗/
Pool
pool0 of Node
pool1 of Video

With pool allocation

With pool allocation  
& splitting

subpool1

pool1

pool0

pool0

subpool2

head

video

video0

video1
head

next

next

Figure 3. VideoList pointing to objects allocated in two different
pools.

in
new VideoList〈none, pool0, pool1〉

In the third layout, depicted in Figure 3, we can see that the head

field of the list points to the first position of pool03, and that all the
next fields point to nodes in their next positions. As a consequence,
each access to a node will either result in a cache hit, or in loading
more nodes into cache for subsequent cache hits. All the videos are
also allocated contiguously. Note that the order in which the objects
are placed in a pool is very important: the wrong order could cost
as much as if objects were not allocated in a pool. Currently we
consider the allocation order and we intend to explore other kinds
of ordering in future work.

3.2 Cluster Annotations
In this section, we explain how to use the cluster annotations to split
pools into different subpools, that is, to split objects into different
records.

For instance, in order to iterate over all videos, in each loop-
iteration, the programmer needs to read the video it points to and
its next node (a common pattern when iterating over linked-lists),
therefore it makes sense that instances of the type Node keep the
references to their videos and to next nodes together. In order
to group the fields video and next, we extend pool creation of
pool0, from the previous section, with the following clustering
information:

Pool pool0 of Node = cluster {� video, � next} in //...

However, in other cases, it does not make sense to keep all
the object fields together, as for instance in the Video objects. We
extend pool1 as below:

Pool pool1 of Video = cluster {� id, � likes}
+ cluster {� views} in //...

In order to understand this splitting decision we look at the
popularVideos method, and in particular Lines 4 and 5, where these
fields are used:

1 let cur = this.head in
2 while (cur != null) {
3 let v = cur.video in
4 if v.views > pivot then
5 print(v.id + ”: ” + v.views + ”, ” + v.likes);
6 cur = cur.next
7 }

If the programmer passes a high number as pivot, the program
is not likely to access the id and likes fields of the object refer-
enced by cur. The lower it is the probability of these fields being

3 we can think of a pool as an array where each element contains an object
(not a pointer as it is common in other languages).
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Figure 4. Splitting within a pool.

accessed, the more we hurt program performance by reading the
entire video. Therefore, given that the field views is accessed in each
loop-iteration, we use a cluster for the single field views, allowing
for more green data (respective to the views) to be fetched, thus re-
ducing the number of cache misses. Moreover, because every time
the video’s id is read from memory, the video’s number of likes is
also read, it makes sense that these two fields are allocated together,
in the same cluster. This allows now to split pool1 of Figure 3 in
subpool1 and subpool2. The result is in Figure 4.

These cluster annotations allow the programmer to allocate dif-
ferent instances of the VideoList data structure with different lay-
outs. This is important because different parts of a program may
use different fields of different instances of the same class. For ex-
ample, we could extend the class Video from our running example
with a toString method that returns its textual representation, read-
ing all its fields. Then if we instantiated a different VideoList and
invoked the toString method on all its videos, the best layout would
be one where the objects’ fields would be allocated together.

There are two problems with this approach that we intend to
tackle in future work: 1) it breaks encapsulation of objects, in the
sense that their fields are no longer hidden from the clients; and 2)
it does not deal with the fact that the same data structure may be
accessed with different iteration patterns.

3.3 Putting it all together
We are finally able to show the final code, with all the class declara-
tions properly annotated and with a new Main class that creates the
data structures. The code is shown below, and the respective layout
in memory is in Figure 4.

class VideoList〈o1, o2, o3〉
head: Node〈o2, o3〉

def popularVideos(above: int): void
// This code does not require any changes
let cur = this.head in
while (cur != null) {
let v = cur.video in
if v.views > pivot then
print(v.id + ”: ” + v.views + ”, ” + v.likes);

cur = cur.next
}

class Node〈o1, o2〉
video: Video〈o2〉
next: Node〈o1, o2〉

class Video〈o〉
id: int
likes: int
views: int

class Main
// it does not take any ownership information
// it only has a single instance, therefore no need for
// pooled allocation
def main(): void
Pool
p1 of Node = cluster {video, next}
p2 of Video = cluster {id, likes} + cluster {views} in

let
data = readFile(”videos.txt”)
videos = new VideoList〈none, p1, p2〉

in {
this.populate(videos, data);
videos.popularVideos(50000);
}

4. Pool reordering, garbage collection and
OHMM

Garbage collection will play an important role in OHMM. In this
section we extend our running example in order to explain how we
can use a garbage collector to optimise object layouts. We extend
the main method as follows:

1 Pool
2 p1 of Node = cluster {video, next}
3 p2 of Video = cluster {id, likes} + cluster {views} in
4 let
5 data = readFile(”videos.txt”)
6 videos = new VideoList〈none, p1, p2〉
7 in
8 this.populate(videos, data);
9 videos.popularVideos(50000);

10 /∗∗ new code ∗∗/
11 this.iterate(videos);
12 // type of top: VideoList〈none, none, p2〉
13 let top = this.sortByLikes(videos) in
14 this.iterate(top);
15 this.iterate(top);
16 this.iterate(top);

The method this.sortByLikes returns a new list (with new nodes)
with aliases to the Videos of the list videos, where these videos
are ordered by number of likes–both videos and top lists point to
the same videos but with different orderings. The iterate method
iterates over the videos of the list received as parameter.

By now, it should be clear that the iteration over the list videos on
line 11 will have different performance from the iterations over the
list top, on lines 14–16, even though they point to the same videos:
the iteration over the top list does not follow the ordering of the
pool of Videos (causing more cache misses) while the list videos
does. In order to avoid cache misses in this kind of situations, we
intend to use a moving collector. For instance in this case, pool p2
would see its objects ordered, so that they would follow the same
ordering as in the top list.

Note however that this operation can be very expensive, depend-
ing on the size of the pool; if the resulting pool is never used again,
or not used often enough, then it is not worth it to move the objects.
Moreover, the garbage collector needs to find what is the order it
should use. In order to solve these problems, we want to use static
analysis to find the iteration patterns of programs.

5. Related Work
As mentioned earlier, pooling and splitting are two techniques often
used to improve programs’ data layout, thus improving their perfor-
mances. The concept of data placement to reduce cache misses was
first introduced by Calder et al. [4], where the authors apply profil-
ing techniques to find temporal relationships among objects. This
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work was then followed up by Lattner et al. [5, 6] where rather then
relying on profiling, the authors apply static analysis to C and C++
programs, in order to find what layout to use. Huang et al. [11] ex-
plore pool allocation in the context of Java. Object Splitting was
introduced by Franz and Kistler [12], where they classify fields as
being hot (accessed frequently) and cold (accessed less frequently)
and use this classification to decide how to split objects. Since then
splitting has been combined with pooling [7, 8, 13, 10, 14].

Another interesting work is the one presented by Hirzel [17],
that uses a copying garbage collector in order to implement several
data layouts of object oriented programs and evaluate which layout
present the best performance.

Tofte and Talpin introduced the concept of region-based mem-
ory management [18, 19]. They use region types, which divide
memory in regions, in an ML language, where allocation and deal-
location are inferred from type and effect analysis. This idea was
then used in the Cyclone language [20], which is concerned with
safety of C-like languages. Other language that also provides means
to split data in the heap, is the Deterministic Parallel Java where
code is annotated with regions information and it is possible to cal-
culate the effects of reading and writing to data [21]. Note that these
languages only divide the heap conceptually.

There are as well some programming languages that split the
heap in several sub-heaps in order to simplify garbage collection
or parallelism. Examples of these languages are Pony [22, 23, 24],
Erlang [25, 26] and Loci [27]. None of these languages, however,
share goals with OHMM, in the sense that they do not try to improve
data locality, and particularly in Pony and Erlang, the programmer
does not have any control on how to divide the heap.

It is not the first time that ownership types are used to ex-
press object layouts. In the context of NUMA systems, Franco and
Drossopoulou [28] proposed a variant of ownership types in order
to describe in which NUMA nodes the objects should be placed.
The final goal of this work was to improve program performance
by reducing memory accesses to remote nodes, ignoring any possi-
ble in-cache data accesses.

6. Final Remarks
This paper informally describes an object-oriented programming
language, where the programmer is able to use a variant of own-
ership types in order to express how data structures and objects
should be allocated in memory. This language was designed to be
compiled to a low-level language that will function using pool allo-
cation and object splitting techniques that are already well-studied
and proved to improve significantly performance. The idea is that
the annotated high-level programs are not meant to be executed.
They should be translated instead to low-level code with the appro-
priated allocation primitives. This allows the programmer to sepa-
rate the functional concerns from data-layout concerns, thus sim-
plifying code.

This is a work in progress and there is still a great amount of
work that we intend to do, such as: develop a formal model to
prove correctness, and study the impact of pooling and splitting on
cache coherency protocols as formalized in [29, 30]. Moreover, we
want to add parallelism and concurrency to the language; add value
semantics, so that we can reduce the amount of dereferencing; and
add constructs that iterate on pools, rather than on data structures.
We also want to develop a compiler, and benchmark OHMM’s
performance.
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